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Penetration of Microwaves Through Dispersive Concrete
Using a Three-Dimensional Finite-Difference Time-Domain Code

S. J. Yakura and D. Dietz
Air Force Research Laboratory, Directed Energy Directorate
Kirtland AFB, NM 87117-5776

Abstract

In this paper, we present a new formulation of a three-dimensional Finite-Difference Time-Domain (FDTD)
algorithm that is applicable for studying the penetration of microwave pulses in conductive and dispersive
materials, such as concrete. We investigate the effects of microwaves penetrating into conductive and dispersive
concrete using the newly formulated algorithm incorporated into a three-dimensional FDTD code. Because of the
dispersive properties of concrete, both conductivity and polarization terms are tdken to be frequency-dependent. We
model the electric polarization terms and the electric conductivity to exhibit linear dispersive behavior via first-
order, time-dependent, electric susceptibility and conductivity functions. Sample one-dimensional FDTD
calculations show that the penetration of wide-band and ultrawide-band microwave pulses must be simulated using
the fully dispersive FDTD algorithm to obtain the proper response from dispersive concrete. On the other hand, the
use of the fully dispersive FDTD algorithm is not essential in simulating the penetration of narrow-band microwave
pulses through concrete because of the non-dispersive nature of the narrow-band (single frequency) effect.

1. INTRODUCTION

Determining the penetration through concrete of microwaves using numerical modeling has received much
attention in recent years. Measured ground penetration radar data in the range of 600 MHz to 3 GHz has shown
concrete to exhibit dispersive characteristics in both electrical permittivity and conductivity. Based on the
experimental data now available from many experiments that have been carried out in last few years, we have
sufficient information to simulate the detailed behavior of microwave pulses that penetrate through dispersive
concrete materials [1-3].

With the advent of present day computers which provide very fast execution times and great quantities of
computer memory, we are at the point where we have enough computational power to solve Maxwell’s equations
directly for a large-scale problem. Among recently investigated numerical techniques that show great promise in
achieving this goal is the well-known finite-difference time-domain (FDTD) method [4]. It is based on using a
simple differencing scheme in both time and space to calculate the transient behavior of electromagnetic field
quantities. Because of the simplicity of the FDTD method, recent researchers have focused their attention on the
numerical evaluation of the linear convolution integral terms which appear in one of Maxwell’s equations (Ampere's
Law). By properly evaluating these terms, many people have successfully modeled the response of linear dispersive
effects [5-10].

In this paper we consider the dispersive materials that exhibit the linear polarization through the first-order, time-
dependent, electric susceptibility function. For such materials the relationship between D(1;x) and E(f;x) can be
expressed as [11]

maz
D(t;x) = €,¢e.. E(t;x)+€, t Jg(r;;)Xf,”(t—'r)dT, (1.1)
p=l oo .
where €, is the electric permittivity of free space, €. is the medium permittivity at infinite frequency, and Xp” Yt-7)
is the pth term of the collection consisting of P, first-order, time-dependent, electric susceptibility functions, where
Pmax is the maximum number of terms which we choose to consider for a particular formulation of Eq. (1.1).

Also, we consider that the current density vector, J(#;x), which appears in one of Maxwell’s equations (Ampere’s
Law), to be dispersive. To include the dispersive characteristics of the current density vector, we first divided the
current density vector into non-dispersive and dispersive terms. The non-dispersive term is expressed in the usual
form as the product of the constant conductivity coefficient and the electric field vector, E(t,x). The dispersive term
is expressed in the linear convolution integral of E(;x) and the first-order time-dependent conductivity function.
Hence, the expression that represents the current density vector, J(1;x), is given in the following form:

Jtix) = Eiz) 300+ Y [Eeix)0l(1-0)dr 12

x=l x=] —00




where O‘K«» and Gx(l)(t-‘t') are the xth terms of the collection consisting, respectively, of X, constant conductivity
values and K, first-order, time-dependent, conductivity functions, where &;,,, is the maximum number of terms
which we choose to consider for a particular formulation of Eq. (1.2).

By including the dispersive contributions in both polarization and current density vectors as shown in Egs. (1.1)
and (1.2) , we can evaluate the linear convolution integrals that appear in Maxwell’s equations (Ampere’s Law) and
come up with a second order accurate FDTD algorithm to simulate the characteristic behavior of a wave propagating
into a linear dispersive material. We investigate, in particular, the case in which the first-order, time-dependent,
electric susceptibility and conductivity functions are expressed in the following complex exponential forms that
contain complex constant coefficients:

x(1)=Re{ahexp(—y;)} U, S (1.3)
and '

o)(t)=Re{ BLexp(—6Lt )} U(r). (1.4)

where Ref } is used to represent the real part of a complex function, U(?) is the unit step function, and ap" B ,(" s };,L ,
and 6,L are complex constant coefficients; superscript L is used to denote the linear coefficient. By making the
proper choices of complex constant coefficients and performing Fourier transforms, we can readily obtain the
familiar Debye and Lorentz forms of the complex conductivity and permittivity in the frequency domain. [11]

By making use of the our newly formulated three-dimensional FDTD algorithm introduced in this paper, we
investigate much needed information about the extent of penetration of microwaves into concrete for various types
of externally applied incident pulses. We discuss the results of numerical simulations of high-power microwaves
penetrating into concrete that is identified by frequency-dependent conductivity and permittivity. The resulting
FDTD calculations provide second order accuracy in both space and time and use the memory-efficient recursive-
convolution (RC) technique to update electromagnetic-field quantities. We present in this paper the results that show
the distinct difference in the penetration of the wide-band pulse as compared to the narrow-band pulse due to the
dispersive nature of concrete.

II. FDTD FORMULATION

In light of Eqgs. (1.1) and (1.2), we write Maxwell’s equations inside the dispersive material as

of 1 H(t;
M:-z“_g(,;x), 2.1)
at =
oD(t;x) _ . . (0) L,..
—=5.=" = VxH(t;x) —E(t,z);m —glx(t,z), 2.2)
with
D(t;x)=¢,e, E(t;x)+€, 3 Ph(t;x), 2.3)
p

Pitix) = [E(rix) x{{(1-7)ds, @4)
Ii(r:x) = (B0 (1-1) dr, @.5)

where H(t;x) is the magnetic field vector, g is the magnetic permeability, B,,L (t;x) is related to the pth terms of the
linear polarization field vector, and J, x’“(t;;) is the first-order time-dependent conductivity. Using an FDTD
algorithm, the above equations can be solved numerically at each time step provided we know how to handle J ()
and E,,L (t;x) numerically. Therefore, the whole solution rests on the question of how to carry out the numerical
evaluation of J X(#;x) and £p" (£;x) at each successive time step. For that reason, the rest of this section is devoted to
the discussion of numerical formulation that treats J,(#;x) and B,," (tx).




To obtain second-order accuracy in time in evaluating the convolution integrals, E(t;x) is approximated by a
piecewise continuous function over the entire temporal integration range so that E(z;x) changes linearly with respect
to time over a given discrete time interval [mAt, (m+1 )At], where m=0,1,...,n, with nAt being the current time step
[12-14]. Thus, the mathematical expression for E(f;x) takes the following form which can be expressed in terms of
the electric field values, Ej;" and Eijk’"“ , respectively, evaluated at discrete time steps t=mAt and t=(m+1)At where
these two successive times are obtained at the same discrete spatial location x=(iAx,jdy,kAz) with Ax, 4y and Az
being the spatial grid sizes in the x, y and z directions, respectively (we use a superscript to designate the discrete
time step and a subscript for the discrete spatial location): \

o (Ep'-ER)

L ik

(t—mAt), for 0SmAtStS(m+1)4t$(n+])At (2.6)

E(1; X )xetian, jay kte) =
0, for <0

For three-dimensional FDTD calculations in Cartesian coordinates, we need to solve the following discrete forms
of Maxwell’s equations that obtained from Egs. (2.1) and (2.2) by finite differencing in both time and space using
the usual Yee algorithm [4]:

n n—4 At At n
uOHE )= i )= { S LBy =B ) ] =0 [ (Bl o =(Elyoe 1. @7
n+z n—2 At n . n A n n
gk Ny ik Ny = U~ (Gi+ik 72—\ Hialk Sz I T ijtk+) Jx —\ Lijik—z) x 1T » .
p(HE" ), — i H )_{Ax[(E )~ ( )1 Az[(E e —(Eluy e 1} 2.8)
n n A p o, . A, o
uCHE = G ) =S LBy )= (Bl d ] =20 [ (B )y =(Efomic ) I}, @9)

n n At 2 2 At n n
(D ) =D ) ={ 5[ (HE e ) —(H %), "Zz[ (HED ), —(HEE), T}

(n+l)4t ( n+1)At
-{ _[ (E(8; X )xefite jayt) )z 9 20’{}”}—{2 J‘(th:(t;z)g#iAx,My,kAz))xdt}’ (2.10)
nt x X na
(DI )y ~(Df ), ={ [y o ~(H G e ] =2 [ (I ) ~(H e ) ]
g Dy ~( D )y =t -l (s Je =(Hiimy S S =7 L0 i 72 =0 (i 22
(n+ 1)t (n+1)dt
-{ j (E(t; X )xfine jayisz) )y dtZa'fr‘” }"[2 I(Jf(t"_’f)ﬁm,my.k&))ydt}’ (2.11)
nat x K na

n n At n+¥ A n 2
(D" ), ~(Dg ) = { S LCHE S )y =B )y 1=20 e ) ~(H S ). T

(n+l)At (n+1)A
{0 D iy e dt 00 JA Y, [T ) iscsoyaer et} @12)
nAt . K X A

To evaluate the right-hand side of Egs. (2.10-2.12), we first begin by substituting Eq. (1.3) into Eq. (2.4) then
differentiating these integrals with respect to time to obtain the following first-order differential equation for
complex function Q,," (t;x) [14]):

Q. (1:x)
ot

From the above equation, the linear polarization vector, B,," (t;x), can be obtained simply by taking the real part of
QpL (1;x). Now, solving the equation exactly in time by using the integrating factor, exp( }7," t), and then performing
the time integration from nAt to (n+1)A4t, we have

+rpQ (hx)=apEx). 2.13)




nat+ A
_Q_:;(nAt+At;_Jg)=exp(— yf,At)_Q_f,(nAt;ymf,exp(— vy 4t) IE(T,'E)exp[—yz(nm—r)]dr. (2.14)
nAt
Based on the piecewise linear approximation which we have considered for the temporal behavior of E(#,x), we can
substitute Eq. (2.6) into the right-hand side (i.e., the inhomogeneous part) of Eq. (2.14) for E(7x). Evaluating at
spatial location x=(iAx,jAy,kAz), these equations result in the following recursive relationship for ( QpL Dk ! in terms
of (0, )", Ey" and Ey™":

Q) (ndt+ Atidx, jAy, ko )=(Q, )" =exp(— s 46 )( Q) ) +Epp (Wi o )+(Ep —Ej )(wh,), (215
where . _
(n+1)A At ok B
(y/f,_o)saf, jexp[ 7L(nAt+At 7)]dt= apjexp(—')"“r)dr—yf[l—exp(—yzm)], (2.16)
p

(w’;,,)-—’L’T - 1)ex,,(-¢¢)d1_“5{1— !
4 Ve Yol

When Egs. (2.15) is used in Eq.(2.3) to obtain discrete forms of Eq. (2.3) at successive times f=nAt and

t=(n+1)At and at specific spatial location x=(idx,jdy,kAz), we can express D;;" and Q,-jk"“ , respectively, in the

following forms:

[1~exp(—y5at )]} . (2.17)

D}, =€, Ej+e, Re{z(gl,;),?k /. (2.18)
P
and
Dyt =e,e. Eji'+e, Re{ Y [exp(~ypat )I( Q) 5y 1+ Eg(Wpo )+ Et —Eg wp )] }- (2.19)

P
Subtracting Eq. (2.18) from Eq. (2.19), we obtain the following expression for the left-hand side of Egs. (2.10-2.12)
in terms of (Q,")y" , Ey" and Ey"™':

n+l n+l n
Q,‘jk __D_l =€,€, (E,,k E,Jk)

+e, Re{ Y. [[exp(~ypat)-1]I( gf,),;k J+Ej(Who )+(El' —Ef Xwh, )1 }. (2.20)

p
To evaluate the second term of the right-hand side of Egs.(2.10-2.12), we substitate Eq. (2.6) for
E(t;%)x=(i4 jay.x1) and obtain the following expression:

(n+1)At

{ jE(t x)x_(,mJAykAz)dtZO'(O) E;;’+§;k)20(°’ . @21)
nat

To evaluate the third term of the right-hand side of Eqs. (2.11-2.13), we first substitute Eq. (1.4) into Eq. (2.5)
and then dlfferentxate the integral with respect to time to obtain the following first-order dxfferentlal equation for
complex function J X (£;x):

adi(1:x)

3 +O0 It x)=BEE(1:x). (2.22)

As in the case of the linear polarization vector, the current density vector, JL (£;x), can be obtained simply by taking
the real part of J_ X(#;x) as seen in the above equation. Once again, we solve the above differential equation exactly




by using integrating factor exp( 6" 1) and then performing the time integration from nAt to ¢ to get the following
expression for complex function J Lx)

t
JE(t:x)=exp[ 0L (ndt—1)] L u(ndt; x)+ Biexp(-6;t) jexp(e:r)g( 7;x)dT. (2.23)
nAt
Again, we substitute Eq. (2.6) into the above equation for E(7x) based on the piecewise linear approximation. Then

we integrate Eq. (2.23) from nAt to nAt+At, evaluated at spatial location x=(iAx,j4y,kAz), to obtain the following
expression for the third term of the right-hand side of Egs. (2.10-2.12):

(n+])At (n+1)At
J.li(t;?f)g#im,jdy.k&)dt =Ref j!i(t!'E)E#iAx,jAy,kAz) dt }
ndt : nat
(n+l )t
L L e L
= Ref exp(OLnat )X (nt;id, jAy, ki) j'exp(—e,r t)dt
' nAt
(n+l)At t
+ﬂ’£ Jdt Iexp[e,f(‘t'—t)]_E_(‘t;_)g)FHAx,jAy,kAZ) dar }
ndt nat
(n+l)Ar
=Ref exp(B,ant)(_li Dik jexp{—efgt)dt
nat
(n+l1)At ¢ n+l1 n
(Ei' -E; )
+pL [at [ explOL(e-t)I Efy +—F—=F=(r-nan)] dr }
nAt  nAt

—Ref OLL[ I—exp (0L )J(JE i + El (£ o)+ (E —Ep NEE D], 224)

X

where
(ntl)A ¢ L
At
(£bo)= B¢ Idt _fexp[e,f(r—t)]dhﬁ;L {J—OLIAt[I—exp(—@,fAt)]}, (2.25)
nat  nAt X K
L (n+1)At 1 L
Ly=fx  dt |(z—nt Ok(r-t PN R S I1—exp(-8Lkat)]}. (226
(Er)=—F A i,( nat)expl O5(5 1) Je==C={ 5= o (o,gm)zl exp( -0} 4t )]} )

The expression for (/ & )i » which appears in Eq. (2.24), can be obtained in the recursive form when we solve
Eq. (2.22) exactly for /. L (t:x) using integrating factor exp( 0" t) and then performing the time integration from
t=(n-1)At to t=nAt while making use of the piecewise linear approximation for E(£;x) to evaluate the integral in the
right-hand side of Eq. (2.22). The result is that we obtain the following recursive relationship for 1t )i’ which is
expressed in terms of ()", Ey"' and Ey: -

(I ) =exp(—0L At Y AL i +E (L50)+(Efy —E" NS (2.27)
where )
nat & ﬂL
(Cro)=By jexp [-0E(n&e—)] d =g j exp (057 Jdr=—i-[ I—exp(—974)], (2.28)
(n-1)at 0 'Y
L b 1 L B 1 L
(gr,,)sjgw—r Jexp(—65% ) dr =;£—{1—0M[1—exp(—e,,m)1}. (229)




Finally, when Egs. (2 20), (2.21) and (2.24) are substituted into Egs. (2.10-2.12), we obtain the following
expressions for (E;™*'), , (Ei™*'), and (E"*'), in terms of known quantities Q) )i (4 )y Ej" and H,,k"”’

which are calculated at previous time steps t=ndt and t=(n+%)At:

(EF' ) =—(ap./a; ), (2.30)
(Ex'),=—(ap,/a;), 2.31)
(ER'), =—(ap, /a; ), (2.32)

where ay,, aoy , 4y, , and a; are given by

% % p % At N (0
-{ [CH3 )y —(H ), ] - [ CH e ) =0 ), T+ = (B ) 30
K

+Re{ [(JE ) 1, 2 [1-exp(~8FAt)] J+(E}, ), Ref Z[(«fi,o)—(éi,,n}

- €€ (B} ) +e Re{[(Q Bl Z[exp( Yodt)- 11}+e (Ep ) Re{Z[(wpo) (Vs )1}, @233)
At n+’2 n+z n+l n Y
gy E{;[( H(ii'//z)jk ), _(H(itéz)jk » - [(Hq(;i%) u;ic/-z’/z)) ]}"’ i) ZO'(O)

+Re{ [(JE ) ], 2 [1-exp(-82A1)] J+(E} ), Re(Z[(éﬁp)—(éi_,u}

K

- €. (Efy )y +e, Re{[(Q B, EIexp( y5At)- 11}+e (Ej ), Re{ Z[(ws,o)-(w,ﬁ,,)f},(z.34)
_{ [(H:Z,st)k t'('/#{jz)k ] - [( ﬂ:ﬁ)Jk)y—(H('liﬁz)]k)]}"' (E;k)zo'(o)

+Re[ [(JE )3 ], 2 [1-exp(-6FA1)] J+(EL ), Re'{Z[(gLo)—(gL,)]}

K'

— € (B} ) +e, Re{[(Q WZ[exp( vp4t)-1] J+e, (E;k)Re[Zf(wpo) (w5, )1}, (235
At
a, =€ €., +7§0L0)+Re[;(§£’1)}+60 Re{g(l//:;,, )} (2.36)

In our FDTD approach, we basically need to update Egs. (2.7-2.9), (2.15), (2.27) and (2.30-2.32), respectively,
for H,Jk"*' (0 i, (LF )y and E;™' at each time step in order to carry out a complete three-dimensional
computer simulation of the electric field response in linear dispersive materials that contain both frequency-
dependent electric conductivity and polarization terms.

. SAMPLE FDTD CALCULATIONS: ONE-DIMENSIONAL CASE STUDY FOR THE
PENETRATION OF MICROWAVES THROUGH CONCRETE

To understand dispersive effects in penetration through concrete, we first perform one-dimensional simulations
of narrow-band, wide-band and ultrawide-band electromagnetic pulses penetrating through finite-thickness concrete
using the newly formulated FDTD algorithm. We perform separate simulations for narrow-band, wide-band, and
ultrawide-band incident electromagnetic pulses to investigate the effect of the pulse shape in the transmitted wave.
For these simulations, we launch a time-dependent electromagnetic pulse in free-space at 8.46 cm (5 grid cells) from
the left-hand edge of the computational space and propagate the pulse from left to right in the positive x-direction.
After traveling 16.83 meters (995 grid cells), the pulse is first incident on 20.30 cm (12 grid cells) thick dispersive
concrete that is characterized by first-order, time-dependent electric susceptibility and conductivity. After
penetrating through dispersive concrete, the wave continues to propagate in free-space for another 16.71meters (988
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grid cells) until it reaches the right hand edge of the computational space that is terminated by a LIAQ absorbing
boundary condition [15]. Also, the LIAO absorbing boundary condition is used at the left-hand edge to absorb all
reflected waves. To model the dispersive behavior of concrete at microwave frequencies, we consider the Debye

' forms for the first-order, time-dependent, electric susceptibility and conductivity functions [see Egs. (1.3) and (1.4)]
by expressing ap'“ , B, n,’“ , and 8, in terms of the following real constants:

a';, =§(es ~e_) and 7z=5 , 3.1

B =o(o -0, ) and ol =w , (3.2)

where &is the first-order electric susceptibility damping frequency, €; s relative permittivity at ® =0, €.is relative
permittivity at @ = infinity, ® is the first-order conductivity damping frequency, o; is: electrical conductivity at
® =0, and ©..is electrical conductivity at @ = infinity. In our sample FDTD calculation, we treat the case where the
dispersive properties of concrete are represented only by one first-order, time-dependent, electric susceptibility
function and one first-order, time-dependent, conductivity function; namely, we set Ppu=1 and Kpu=1 in our
FDTD algorithm obtained in the previous section. Also, we set 6% to be equal to G.. so that the electrical
conductivity contribution is properly taken into account at © = 0.

For our simulations, we investigate three different incident pulses: the sine-wave pulse (narrow-band), the
frequency-band filtered sinc function pulse (wide-band), and the Gaussian pulse (ultrawide-band). We use the
following mathematical expressions for launching of the three incident pulses:

- For the sine-wave pulse: Incident Pulse(t)=A sin( ot W U(t)-U( Lot )] (3.3)
- For the frequency-band filtered sinc function pulse:

@ .
Incident Pulse(t)=A { sinc [(a)a(t—-tdelay )]—-&)Lsinc [(wb(t—tdelay ) JU(t), (34)

a

t-t
- For the Gaussian pulse: Incident Pulse(t)=A exp[ (__tﬂqy_) Ju(t), (3.5)
width

where A is the amplitude of the electric field and 41, is the delay time for the incident pulse. We arbitrarily assign
A to have the value of 1.0 volt/meter, t,4 to have values of 4.23x10” second (150 times that of the time increment)
and 3.387x107° second (12 times that of the time increment), respectively, for the sine-wave pulse and the Gaussian
pulse, f41, to have the value of 2.82x10°® second for both the frequency-band filtered sinc function pulse and the
Gaussian pulse, and ®, and o to take values of 1.128x10' radians/second and 4.512x10'" radians/second,
respectively. Figurel, Figure 2 and Figure 3 show the time-domain and frequency-domain plots of the three incident
waves we use in our simulations.

We select the total number of simulation cells to be 2000, ranging from x=-1000 to x= 1000, with the
free-space/concrete interfaces located at x = 0 and x=8. We launch a pulse into free space 5 grid cells to the right of
the left-hand edge (at x =-1000) and the pulse travels in the positive x-direction. We use the LIAO absorbing
boundary condition [15] at both ends of the computational space.

Following are the basic FDTD parameters that we use in our one-dimensional simulations:

Uniform grid cell size (Ax) = 1.691 centimeters,

Total simulation distance (Ax times the total number of cells) = 33.82 meters,

Time step increment (4t = Ax/2¢) = 28.2 picoseconds, '

Total number of time steps = 5000 (total simulation time = 0.141 microsecond ),

where c is the speed of light.
. To assign values for parameters that describe the material properties of dispersive concrete as seen in Egs. (3.1)
and (3.2), we make use of the concrete data shown in Figures 4 and 5 [1], specifically selecting the curves at the
saturation level (S) of 0.5.
€,=55;€..=75;and = 2.497x10? second; &, = 0.05 mhos; 0..= 0.15 mhos; @ = 2.0x10° second.

Results of the fully dispersive FDTD calculations are shown in Figure 6, Figure 7 and Figure 8, respectively, for
the sine-wave pulse, the frequency-band filtered sinc function pulse, and the Gaussian pulse. These figures are snap
shots of the spatial electric field patterns taken at time steps of 1,500 and 3,500 (i.e., before and after the wave
penetrates through concrete).




To compare results of our fully dispersive FDTD calculations with non-dispersive FDTD calculations, we
perform nondispersive FDTD calculations using the average permittivity and conductivity values centered on the
middle frequency of the incident pulse. Shown in Figure 9, Figure 10 and Figure 11 are the relative cumulative
energy of the pulses that penetrate through concrete, respectively, for the sine-wave pulse, the frequency-band
filtered sinc function pulse, and the Gaussian pulse. From these figures we can see that the wider the incident pulse
the greater the discrepancy between fully dispersive and non-dispersive FDTD calculations. It clearly indicates the
importance of carrying out the fully dispersive FDTD calculations for dispersive concrete if the incident pulse is
considered to be relatively broad over the frequency range where the permittivity and conductivity values change
significantly.

IV. CONCLUSIONS

Based on the FDTD approach we presented here, we can solve three-dimensional Maxwell’s equations directly
for the propagation of electromagnetic waves in linear dispersive materials that exhibit both frequency-dependent
electrical conductivity and polarization. Because of the piecewise linear approximation we used for the time
dependent part of the electric field vector, our approach provides second order accuracy in time. In addition, our
approach retains all the advantages of the usual first-order discrete recursive convolution approach, such as fast
computational speed and efficient use of computer memory:

We have shown that it is critical to express the first-order, time-dependent electric susceptibility and conductivity
functions in the exponential forms in order to obtain the recursive relationships in our FDTD algorithm. An
important result we have shown in this paper is that our FDTD algorithm provides second order accuracy in both
time and space.

Our sample one-dimensional FDTD calculations show that it is very important to include fully dispersive effects
-in the analysis of microwaves penetration through concrete, especially for wide-band and ultrawide-band incident
pulses, because concrete shows significant frequency-dependent conductivity and permittivity at microwave
frequencies. Use of the simple frequency-averaged conductivity value in a nondispersive FDTD calculation will not
result in predicting the correct amount of wave energy that penetrates through concrete.
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Figure 1: Time-domain (top figure) and frequency-domain (bottom figure) plots of a sine-wave
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Figure 2: Time-domain (top figure) and frequency-domain (bottom figure) plots of a frequency-band

filtered sinc function incident pulse.
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Figure 4: Concrete Permittivity Data [Reference 1]
The legend in the left-hand side shows the specific condition that the data is evaluated
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Figure 6: Spatial electric field profiles for a sine-wave pulse taken at time steps = 1,500 (top figure) and
3,500 (bottom figure). A bold line in the middle represents the thickness of concrete
(12 grid cells or 8 inches).
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Figure 7: Spatial electric field profiles for a frequency-band filtered sinc function pulse taken at time
steps = 1,500 (top figure) and 3,500 (bottom figure). A bold line in the middle represents the
thickness of concrete (12 grid cells or 8 inches).
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Figure 8: Spatial electric field profiles for a Gaussian pulse taken at time steps = 1,500 (top figure) and
3,500 (bottom figure). A bold line in the middle represents the thickness of concrete
(12 grid cells or 8 inches).
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Figure 9: Overlay plots of cumulative power penetrated through concrete for fully dispersive FDTD
and nondispersive (with the average conductivity value) FDTD calculations in the case of a
sine-wave pulse.
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Figure 10: Overlay plots of cumulative power penetrated through concrete for fully dispersive FDTD
and nondispersive (with the average conductivity value) FDTD calculations in the case of a
frequency-band filtered sinc function pulse.
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Figure 11: Overlay plots of cumulative power penetrated through concrete for fully dispersive FDTD
and nondispersive (with the average conductivity value) FDTD calculations in the case of a
Gaussian pulse.
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